"Mastering SQRT() in Excel: Overview, Examples, and Assignments for Beginners"

Rashmi Mishra



Mastering SQRT()  in Excel

 Overview, Examples, and Assignments for Beginners 

What is the SQRT() Function?

  • The SQRT() function stands for "square root."
  • It returns the positive square root of a given number.
  • The square root of a number xxx is a value yyy such that y×y=xy \times y = xy×y=x.

Syntax

SQRT(number)

  • number: This is the number for which you want to find the square root. It must be a non-negative number. If you provide a negative number, Excel will return an error (#NUM!).

Examples

1.  Basic Calculation:

o    To find the square root of 16:

=SQRT(16)

o    Result: 4 (since 4×4=164 \times 4 = 164×4=16)

2.  Using Cell References:

o    If you have a number in cell A1 (let’s say 25), you can use:

=SQRT(A1)

o    Result: 5 (since 5×5=255 \times 5 = 255×5=25)

3.  Square Root of a Non-Integer:

o    To find the square root of 20:

=SQRT(20)

o    Result: Approximately 4.472 (since 4.472×4.472≈204.472 \times 4.472 \approx 204.472×4.472≈20)

Important Notes

  • Negative Numbers: You cannot calculate the square root of a negative number with SQRT(). For example, =SQRT(-1) will result in an error.
  • Zero: The square root of zero is zero, so =SQRT(0) will return 0.
  • Precision: The result may have decimal places, depending on the number's value. You can use the ROUND() function if you need to limit the number of decimal places.

Practical Applications

1.  Finance: The square root is often used in finance to calculate the volatility of investments.

2.  Statistics: It is useful in various statistical calculations, such as standard deviation.

3.  Geometry: In geometry, it helps in calculations involving areas and distances.

Example Scenario

Scenario: Calculating the Area of a Square

If you want to find the side length of a square given its area, you can use the SQRT() function. For instance, if the area of a square is 64 square units, you can find the length of one side using:

1.  Area in Cell A1: Enter 64 in cell A1.

2.  Formula in Cell B1:

=SQRT(A1)

3.  Result in Cell B1: 8 (since 8×8=648 \times 8 = 648×8=64)

Summary

  • The SQRT() function is a powerful and simple tool in Excel for finding square roots.
  • Remember that it only works with non-negative numbers.
  • It has various applications in finance, statistics, and geometry, making it a valuable function for MBA students.

Assignments

Assignment 1: Basic Square Roots

Task: Calculate the square roots of the following numbers using the SQRT() function:

1.  36

2.  49

3.  81

4.  100

Data Table:

Number

Excel Formula

Expected Result

36

=SQRT(36)

6

49

=SQRT(49)

7

81

=SQRT(81)

9

100

=SQRT(100)

10

Solutions:

1.  36=6\sqrt{36} = 636​=6

2.  49=7\sqrt{49} = 749​=7

3.  81=9\sqrt{81} = 981​=9

4.  100=10\sqrt{100} = 10100​=10


Assignment 2: Using Cell References

Task: Use the numbers in cells A1 to A4 to find their square roots.

  • A1: 25
  • A2: 64
  • A3: 144
  • A4: 196

Data Table:

Cell

Value

Excel Formula

Expected Result

A1

25

=SQRT(A1)

5

A2

64

=SQRT(A2)

8

A3

144

=SQRT(A3)

12

A4

196

=SQRT(A4)

14

Solutions:

1.  25=5\sqrt{25} = 525​=5

2.  64=8\sqrt{64} = 864​=8

3.  144=12\sqrt{144} = 12144​=12

4.  196=14\sqrt{196} = 14196​=14


Assignment 3: Handling Errors

Task: What happens when you try to calculate the square root of negative numbers? Test the following and note the result:

1.  -1

2.  -16

3.  -36

Data Table:

Number

Excel Formula

Expected Result

-1

=SQRT(-1)

#NUM! (Error)

-16

=SQRT(-16)

#NUM! (Error)

-36

=SQRT(-36)

#NUM! (Error)

Solutions:

  • All attempts to calculate the square root of negative numbers return the error #NUM!, indicating that the square root cannot be computed.

Assignment 4: Real-World Applications

Task: You are conducting a survey to determine the area of several square plots of land in square meters. The areas of the plots are as follows:

1.  Plot 1: 256 m²

2.  Plot 2: 729 m²

3.  Plot 3: 484 m²

4.  Plot 4: 900 m²

Data Table:

Plot

Area (m²)

Excel Formula

Expected Result

1

256

=SQRT(A2)

16

2

729

=SQRT(A3)

27

3

484

=SQRT(A4)

22

4

900

=SQRT(A5)

30

Solutions:

1.  Plot 1: 256=16\sqrt{256} = 16256​=16 (Side length = 16 m)

2.  Plot 2: 729=27\sqrt{729} = 27729​=27 (Side length = 27 m)

3.  Plot 3: 484=22\sqrt{484} = 22484​=22 (Side length = 22 m)

4.  Plot 4: 900=30\sqrt{900} = 30900​=30 (Side length = 30 m)


Assignment 5: Square Roots of Non-Integer Values

Task: Calculate the square roots of the following non-integer values using the SQRT() function:

1.  10.24

2.  50.56

3.  200.25

4.  0.81

Data Table:

Value

Excel Formula

Expected Result

10.24

=SQRT(A1)

3.2

50.56

=SQRT(A2)

7.1

200.25

=SQRT(A3)

14.14

0.81

=SQRT(A4)

0.9

Solutions:

1.  10.24≈3.2\sqrt{10.24} \approx 3.210.24​≈3.2

2.  50.56≈7.1\sqrt{50.56} \approx 7.150.56​≈7.1

3.  200.25≈14.14\sqrt{200.25} \approx 14.14200.25​≈14.14

4.  0.81=0.9\sqrt{0.81} = 0.90.81​=0.9


Assignment 6: Combining with Other Functions

Task: Use the SQRT() function combined with ROUND() to round the square roots of the following numbers to 2 decimal places:

1.  3.14

2.  8

3.  15.5

4.  50

Data Table:

Value

Excel Formula

Expected Result

3.14

=ROUND(SQRT(A1), 2)

1.77

8

=ROUND(SQRT(A2), 2)

2.83

15.5

=ROUND(SQRT(A3), 2)

3.94

50

=ROUND(SQRT(A4), 2)

7.07

Solutions:

1.  3.14≈1.77\sqrt{3.14} \approx 1.773.14​≈1.77

2.  8≈2.83\sqrt{8} \approx 2.838​≈2.83

3.  15.5≈3.94\sqrt{15.5} \approx 3.9415.5​≈3.94

4.  50≈7.07\sqrt{50} \approx 7.0750​≈7.07


Assignment 7: Negative Values and Error Handling

Task: What happens when you try to calculate the square root of negative numbers? Use the following negative numbers and observe the results:

1.  -4

2.  -64

3.  -100

4.  -225

Data Table:

Value

Excel Formula

Expected Result

-4

=SQRT(A1)

#NUM! (Error)

-64

=SQRT(A2)

#NUM! (Error)

-100

=SQRT(A3)

#NUM! (Error)

-225

=SQRT(A4)

#NUM! (Error)

Solutions:

  • All calculations of the square root of negative numbers return the error #NUM!, indicating that the square root cannot be computed for negative values.

Assignment 8: Area and Perimeter Calculations

Task: Given the area of various square fields, calculate both the side length and the perimeter using the SQRT() function. The areas are:

1.  144 m²

2.  225 m²

3.  324 m²

4.  400 m²

Data Table:

Area (m²)

Excel Formula for Side Length

Excel Formula for Perimeter

Expected Side Length

Expected Perimeter

144

=SQRT(A1)

=4*SQRT(A1)

12

48

225

=SQRT(A2)

=4*SQRT(A2)

15

60

324

=SQRT(A3)

=4*SQRT(A3)

18

72

400

=SQRT(A4)

=4*SQRT(A4)

20

80

Solutions:

1.  Area: 144 m²

o    Side Length: 144=12\sqrt{144} = 12144​=12 m

o    Perimeter: 4×12=484 \times 12 = 484×12=48 m

2.  Area: 225 m²

o    Side Length: 225=15\sqrt{225} = 15225​=15 m

o    Perimeter: 4×15=604 \times 15 = 604×15=60 m

3.  Area: 324 m²

o    Side Length: 324=18\sqrt{324} = 18324​=18 m

o    Perimeter: 4×18=724 \times 18 = 724×18=72 m

4.  Area: 400 m²

o    Side Length: 400=20\sqrt{400} = 20400​=20 m

o    Perimeter: 4×20=804 \times 20 = 804×20=80 m



_______________________________________________________________________